

RATIONALE

This document was produced in 2008 in response to a NATO Request and is a snapshot of the technology and recommended standardization path as of 2008.

STABILIZED NOTICE

This document has been declared "Stabilized" by the SAE AS-1B Aircraft Store Integration Committee and will no longer be subjected to periodic reviews for currency. Users are responsible for verifying references and continued suitability of technical requirements. Newer technology may exist.

[^0]
FOREWORD

This report presents a recommended technical architecture for interoperable plug-and-play integration of aircraft, launchers, and weapons across NATO air forces. It was developed under the Aircraft, Launcher, and Weapon Interoperability - Common Interface (ALWI-CI) study performed over the period from October 2005 to November 2006. This study was authorized by the Conference of National Armament Directors (CNAD) at the request of Aerospace Capability Group 2 of the NATO Air Force Armament Group (NAFAG). It followed two previous studies on aircraft, launcher, and weapon interoperability (ALWI-1 and ALWI-2) that addressed all aspects of interoperability including the physical and electrical interfaces, environmental compatibility, and data/software. The focus of ALWI-CI was to build upon the recommendations of those two studies in the area of data/software.

The technical architecture described in this document was defined by a team within Subgroup 97 of the NATO Industrial Advisory Group (NIAG), which conducted the ALWI-Cl study in collaboration with the SAE Aerospace AS-1 Committee. The Technical Architecture team was required by the NATO sponsor to address the following items in performing its role in the study:

- Analyze the applicable results of the previous ALWI-1 and ALWI-2 studies
- Take compatibility with legacy weapons into account, as well as compatibility with both airplanes and helicopters, and all types of unmanned combat air vehicle (UCAV)
- Harmonize the technical architecture with the Integrated Modular Avionics (IMA) standards of the Allied Standard Avionics Architecture Council (ASAAC) and with NATO Air Force Armament Group (NAFAG) Air Group 5 (Avionics and Landing Systems)
- Harmonize the technical architecture with the requirements of the Generic Open Architecture (GOA) and other applicable definitions/specifications of the Society of Automotive Engineers (SAE)
- Coordinate with other relevant NATO agencies as applicable
- Develop a Technical Architecture Document with interface descriptions for use within NATO

The developed Technical Architecture Document is the underlying basis of this report.

TABLE OF CONTENTS

1. SCOPE 4
1.1 Purpose 41.2
Field of Application 4
REFERENCES 4
Applicable Documents 4
2.1.2 ANSI Publications 5SAE Publications4
2.13
 IEEE Publications 5
2.1 .4 NATO Documents 5
2.1 .5 OMG ${ }^{\text {TM }}$ Publications 5
2.1.6 TIA Publications 5
2.1.7 U.S. Government Publications 5
2.2 Acronyms and Abbreviations 63.
BACKGROUND 9
Architecture Views 9
ALWI Technical Reference Models 10
3.2.1 NATO Technical Reference Model 11
3.2.2 NATO Common Standards Profile 12
3.2.3 NATO Common Operating Environment Component Model 13
3.2 .4 NCOE Basket of Products 14
3.2.5 Interoperability Degrees within NATO 14
3.2 .6 ALWI Service Oriented Architecture 15
3.2 .7 Weapon Systems Domain TRMs 16
3.2.8 GOA Framework 16
3.2 .9 Generic Aircraft Store Interface Framework 17
3.2.10 ALWI GOA Profile 18
3.2.11 GASIF Profile 193.3
Standards Selection Criteria 21
SERVICES 21Mission Area Applications21
4.1.1 Mandated Standards 21
Emerging Standards 22
4.1.3 Recommended Additional Standards 23
4.2 Support Application Services 23
4.2.1 Mandated Standards 23
4.2.2 Emerging Standards 23
4.2.3 Recommended Additional Standards 24PROTOCOLS24
Presentation Layer Protocols 24Mandated Standards24
5.12 Emerging Standards 25
5.1.3 Recommended Additional Standards 25
5.2 Session/Transport Layer Protocols 25
5.2.1 Mandated Standards 25
5.2.2 Emerging Standards 25
5.2 .3 Recommended Additional Standards 25
5.3 Routing Protocols 25
5.3.1 Mandated Standards 26
5.3.2 Emerging Standards 26
5.3.3 Recommended Additional Standards 27
5.4 Data Buses 27
5.4.1 Mandated Standards 27
5.4.2 Emerging Standards 27
5.4.3 Recommended Additional Standards 28
5.5 Physical Layer 28
5.5.1 Mandated Standards 28

[^0]: SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."
 SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.
 Copyright © 2012 SAE International
 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.
 TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
 Tel: \quad +1 724-776-4970 (outside USA)
 Fax: 724-776-0790
 Email: CustomerService@sae.org
 SAE values your input. To provide feedback on this Technical Report, please visit

